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Abstract

In microdevices, the competition between surface energy and elastic energy could lead at the phenomenon known as

stress-driven morphological instability (MI), causing an increase of surface roughness with time. Several different mass

transport mechanisms can trigger such a morphological alteration and operate simultaneously: surface and bulk dif-

fusion, evaporation and condensation, chemical reactions. Unstable solids could eventually evolve towards crack-like

surfaces thus altering mechanical, electrical and optical properties of the devices or even leading to catastrophic failures

by supercritical crack propagation. In this work, a more general kinetic law is employed to estimate the onset of MI,

considering the effect of the stress field on the atomic mobility. A more intuitive and straightforward approach is used to

determine the stability conditions, where the rate of atomic mass motion is introduced as a stability parameter. The

critical loads and wavelengths for the onset of MI, determined as a function of material parameters a and b, are
compared with the limiting conditions for the supercritical crack propagation (SC) of a crack-like surface in order to

asses if and under which situations catastrophic failures by SC can be observed. Two practical cases are investigated:

fixed wavelength (Case I) and arbitrary rough surface with a fixed remote load (Case II). In Case I, absolute and relative

threshold loads are found below which MI could never occur and a transitional wavelength over which MI would

always lead to SC is introduced. In Case II, it is shown that dominant perturbation for MI would always lead to SC

given enough time for the surface to evolve towards a crack-like profile. The influence of the material properties a and b
on the critical parameters is also addressed.

� 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

It is well known that surface morphology can be altered by atomic mass transport due to bulk and

surface diffusion, evaporation and condensation, and chemical reactions. Thermal gradients, mechanical

stresses, electrical and magnetic fields, ion or photon bombardment can modify the surface free energy of
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solids thus triggering mass transport. Stability and control of surfaces� evolution are issues of great interest

in microdevices, where even slight corrugations can alter mechanical, electrical and optical performances,
and in thin fragile ceramic films where static fatigue can occur.

Consider a solid under remote uniaxial loading r1 with a non-planar surface (Fig. 1a). The stress field

below the interface is not uniform and the elastic energy stored at the valleys is larger than the unperturbed

value w1ð/ r2
1=EÞ, whilst the elastic energy stored at the crests is smaller than the unperturbed value. On

the other hand, the surface energy being proportional to the surface curvature is non-uniform and it is

positive at the crests and negative at the valleys. Consequently, the free energy of the surface defined as the

sum of the elastic strain energy, surface energy and chemical energy, is not uniform. With such a scenario,

since atoms migrate spontaneously from sites of larger free energy towards sites of smaller free energy,
morphological alterations are expected. Considering surface diffusion as the mechanism for atomic mass

transport, the elastic energy pushes atoms from the valleys towards the crests, thus increasing the profile

roughness, whereas the surface energy pushes atoms in the opposite direction. Similarly, if chemical re-

actions take place at the free surface and the solid looses mass, the surplus of elastic energy at the valleys

pushes atoms away from the solid to the parent phase, usually a fluid, whilst again the surface energy has

the opposite effect pushing atoms away from the crests. Therefore, if the effect of surface energy is larger

than the contribution of elastic energy the system would be stable and the initial roughness flattened;

conversely, if the effect of the elastic energy is larger than the contribution of the surface energy the system
would be unstable and the initial roughness would grow with time. This instability related to the compe-

tition between elastic and surface energies is also known as energetically driven morphological instability

(MI), and has been identified by Asaro and Tiller (1972) for stress corrosion cracking.

Such a phenomenon has been recently the object of several studies. For instance, Srolovitz (1989) has

determined a critical wavelength of the initial surface roughness above which the system is always unstable

given by

kcr ¼
pEc

1� m2ð Þr2
1

ð1Þ

for an elastic half-plane under uniaxial remote loading, where c is the surface tension, E and m are the

Young�s modulus and Poisson�s ratio respectively. The calculations of Srolovitz were conducted under the

assumption of stress independent surface diffusivity Ds and atoms mobility M . In 1991, Aziz and coworkers

have firstly showed and measured the influence of the stress field on atomic surface mobility introducing the

concept of activation strain tensor V �
ij . Subsequently, it has been shown that such stress-dependence can

affect surface stability and cause the so called kinetically driven MI (Barvosa-Carter et al., 1998).

Fig. 1. (a) The perturbed surface profile of an elastic half-plane loaded by a remote uniform stress r1: k and d are respectively the

wavelength and the semi-amplitude of the perturbation. (b) A �crack-like surface� is an array of edge cracks with spacing k and depth a
loaded remotely by an uniaxial load r1.
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The above mentioned analysis are devoted to the estimation of the onset of MI and are based on small

perturbation techniques. Therefore they cannot be employed to study the long-term evolution of surface

profiles. This can be only done by means of numerical analysis as those performed by Yang and Srolovitz

(1993), Chiu and Gao (1994) and Freund (1995). In the first two papers, the evolution of wavy profiles due
to surface diffusion has been studied showing that an initially unstable profile ðk > kcrÞ evolves over time

towards a flawed surface which can be assimilated to an array of edge cracks with spacing k. Yang and

Srolovitz have written of evolution towards a crack-like surface, whilst Chiu and Gao have referred to a

cuspidal profile. In addition, more recently, Yu and Suo (1999) have studied the nucleation and subsequent

propagation of cracks on the free surface of polycrystalline materials exposed to corrosive environment,

where the dominating atomic mass transport are evaporation, condensation and chemical reactions. They

have again shown that the initial wavy surface can evolve towards a crack-like interface. They also esti-

mated a normalized threshold parameter Kth above which the nominally flat surface is unstable and a crack
front can nucleate

Kth ¼
r2k
Ecs

� �
th

¼ 4� 2
cB
cS

ð2Þ

where cS and cB are the surface energies per unit length at the free surface and grain boundary respectively.

The discussion so far conducted has shown that three stages can be depicted during the life of a surface

susceptible to MI: (i) initiation of MI; (ii) evolution of the surface profile towards a flawed surface with
spacing k (P kcr); (iii) supercritical propagation of surface flaws and catastrophic failure. In this work,

attention is focused on stages (i) and (iii) with the aim of determining the critical conditions (critical

wavelength and critical stress) for the onset of MI and the limiting conditions for the supercritical prop-

agation of surface flaws (SC). The dependence of the atomic mobility on the stress field is considered as

from Barvosa-Carter et al. (1998). Thus the critical conditions for MI are compared with those for SC for

understanding if and under which conditions MI could lead to catastrophic failure, as a function of the

material properties.

2. Stress-driven morphological instability

An elastic half-plane with a nominally flat surface loaded by an uniaxial uniform stress r1 is considered,

as from Fig. 1a. The critical conditions for the onset of the stress-driven MI are determined by means of a
small perturbation analysis. Therefore, the nominally flat surface is perturbed by a sinusoidal profile

hðxÞ ¼ dejmx, where d is the semi-amplitude and m ¼ 2p=k the wave number of the perturbation. Under the

hypothesis of small perturbations, i.e. h0ðxÞ / dm 	 1, any perturbed physical quantity q can be expressed

as q ¼ qðyÞejmx.

2.1. The perturbed stress field

The governing equation for a linear elasticity problem in terms of the displacement vector u ¼ uiþ
vjþ wk is given by

$divuþ ð1� 2mÞr2u ¼ 0 ð3Þ

Thus, introducing the perturbed components of the stress field u ¼ uðyÞejmx, v ¼ vðyÞejmx and w ¼ wðyÞejmx,
and imposing the boundary conditions at infinity (u ! 0 for y ! �1), it follows after some algebra that
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uðx; yÞ ¼ ½A1 þ A2y�emyejmx

vðx; yÞ ¼ j
ð3� 4mÞ

m
A2

��
� A1

�
� A2y

�
emyejmx

ð4Þ

where the constants A1 and A2 must be determined imposing the boundary conditions at the free surface

hðxÞ: normal tractions rnnðxÞ and tangential tractions rtnðxÞ are zero (more details are given in Srolovitz,
1989). Recalling the well known compatibility and constitutive equations of the linear theory of elasticity, it

follows that

A1 ¼ 2j
ð1� mÞ
2l

dr1; A2 ¼ j
r1

2l
ðmdÞ ð5Þ

where higher order terms have been neglected (O½ðmdÞ2ej2mx� � 0). Finally, the perturbed stress field has the

form

rxxðx; yÞ ¼ �r1ðmdÞ½2þ my�emyejmx

ryyðx; yÞ ¼ r1ðmdÞ½my�emyejmx

rxyðx; yÞ ¼ jr1ðmdÞ½1þ my�emyejmx
ð6Þ

and the strain energy density on the surface, under plane strain conditions rzz ¼ mðrxx þ ryyÞ, is given by

w� w1 ¼ �2
ð1� m2Þ

E
r2
1ðmdÞejmx ð7Þ

where w1 ¼ ð1� m2Þr2
1=2E is the unperturbed contribution.

2.2. The kinetic law

It is well known that atoms are in continuous �chaotic� motion and in the absence of any external driving
force (thermal gradients, surface and chemical energy gradients, electrical and magnetic fields, gravitational

and stress fields, and ion/photon bombardment) every particles has the same probability of moving in any

direction independently from its original position, in an isotropic and infinite solid or fluid. Macroscopic

mass transport, and consequently morphological alterations, are due to the ordered motion of atoms,

independently of the transport mechanism which can be either surface and bulk diffusion, evaporation and

condensation, chemical reactions.

The rate r at which atoms move is related to the intensity of driving forces pushing the atoms to migrate

from the more energetic site 1 to the less energetic site 2. Assuming that the imposition of external fields
leads to a reduction of the free energy in site 2 relative to site 1 by an amount of 2DG, following Ohring

(1992, Section 1.6.2), the rate r can be written as

r1¢ 2 ¼ m exp

�
� G� � DG

kT

�
ð8Þ

where k ¼ 1:3806568� 10�23 JK�1 is the Boltzman constant, m is the characteristic lattice frequency, G� is

the Gibbs free energy of activation for the assumed mass transport mechanism and T is the absolute

temperature. The rate r1!2 can be interpreted as the number of atoms per second moving from 1 to 2. From

(8), a positive net rate of atoms from 1 to 2 is derived as

r ¼ r1!2½ � r2!1� / exp

�
� G�

kT

�
sinh

�
� DG

kT

�
ð9Þ
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In (9), the first term is related to the activation energy G� and it is proportional to the atomic mobility M ;

whilst the second term is related to the driving force F of the system, defined as F ¼ �DG > 0 for spon-

taneous evolutions. In the most general form G� can be written as the sum of the activation energy for the

stress-free state Q�, the strain activation energy V �
ij rij and the surface activation energy c�ijjij, that is

G� ¼ Q� � V �
ij rij � c�ijjij ð10Þ

Usually, the contribution of c�ijjij could be neglected, and it is not considered in the sequel. Whereas, the

free energy variation DG is given by the sum of the contributions of the chemical energy DG0, surface energy
DGj ¼ cijjij and elastic energy DGr, that is

DG ¼ DG0 þ DGj þ DGr ¼ �F ð11Þ

Notice that the above relations are general in that they are independent of the mass transport mecha-

nism. Moreover, the effect of the stress field on the activation energy G�, or atomic mobility M , is con-

sidered introducing the strain activation energy tensor V �
ij , defined as

V �
ij ¼ kT

ologM
orij

ð12Þ

by Aziz et al. (1991).

2.3. Stability of the surface and characteristic equation

Morphological alterations of the surface are due to atomic mass transport. It is then natural to relate the
stability analysis of the surface to the stability of atomic motion and introduce the variation of the net rate

of atomic motion r with the perturbation as a stability parameter. An infinitesimal increase dh in surface

profile amplitude causes a perturbation dr of the rate at which atoms move: (i) for dr=dh < 0 a perturbation

of the surface profile leads to a negative rate of atomic motion, that is to say the atomic motion opposes the

perturbation of the surface reducing its amplitude with time (stable perturbation); (ii) for dr=dh > 0 a

perturbation of the surface profile leads to a positive rate of atomic motion, that is to say the atomic motion

favors the evolution of the surface whose amplitude grows indefinitely with time (unstable perturbation); the

onset of instability is then given by (iii) dr=dh ¼ 0, for which the amplitude of the perturbed profile neither
grows nor decays (threshold condition).

It is thus clear that the stability of the system is assessed regardless of the atomic mass transport

mechanism, which could be diffusion, evaporation and condensation, chemical reactions.

From (9), the stability parameter dr=dh can be estimated and after straightforward algebraic calculations

it results

dr
dh

/ exp
�G�

kT

� �
cosh

�DG
kT

� �
tanh

DG
kT

� �
d

dh
G�

kT

� ��
� d

dh
DG
kT

� ��
ð13Þ

Observing that the term ½expð�G�=kT Þ coshð�DG=kT Þ� is always positive, and substituting the expressions

for G� and DG reported in (10) and (11) respectively, the stability of the system is assessed by checking the

sign of the following characteristic equation

2 tanh
F0X
2kT

� �
d

dh

V �
ij rij

X

� �
� dðcjÞ

dh
� dw

dh
R0 ð14Þ
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(i) a positive value of the characteristic equation means an unstable system ðdr=dh > 0Þ; (ii) a negative value
of the characteristic equation means a stable system ðdr=dh < 0Þ; and (iii) a zero value gives the threshold of

instability ðdr=dh ¼ 0Þ. 1

From (7), the variation of the elastic energy with the amplitude perturbation h can be readily calculated
as

dw
dh

¼ �2m
ð1� m2Þ

E
r2
1 < 0 ð16Þ

which shows that the effect of the elastic energy is destabilizing and proportional to the wave number m and

to the second power of the remote stress r1.

Under the hypothesis of isotropy, the contribution of the surface energy is proportional to the surface

curvature j � þm2h (to the leading order in h), thus

dðcjÞ
dh

¼ þm2c ð17Þ

from which it can be concluded that the effect of the surface energy is stabilizing and is proportional to the

second power of the wave number m.
Under the hypothesis of isotropy and symmetry, the components of the activation strain tensor V �

ij in the

ðx; zÞ-plane of corrugation are identical V �
xx ¼ V �

zz ¼ V �, whilst the non-symmetric components are zero

V �
ij ¼ 0. Thus from (6), the contribution of the strain activation energy results as

V �
ij rij ¼ V �r1ð1þ mÞð1� 2mhÞ ð18Þ

where the sole stress rxx gives a non zero contribution. Thus

d

dh

V �
ij

X
rij

� �
¼ �2ð1þ mÞmV �

X
r1 ð19Þ

from which it derives that for V �r1 > 0 the effect of the perturbed surface stress field is stabilizing being

dðV �
ij rijÞ=dh < 0, thus increasing the value of (14), whilst for V �r1 < 0 the effect of the perturbed surface

stress field is destabilizing being dðV �
ij rijÞ=dh > 0, thus increasing the value of (14). The contribution of the

activation strain energy is proportional to the wave number m and to the first power of the remote stress

r1. Differently from the contribution of the elastic energy, in this case the sign of the remote load influences

the stability of the system: for a positive V �, the system is destabilized by a compressive remote load

V �r1 < 0ð Þ and stabilized by a tensile remote load V �r1 > 0ð Þ.
Substituting the relations (16), (17) and (19) in the characteristic equation (14), the stability conditions is

obtained as a function of the material properties, remote stress r1 and wave number m.

�4 tanh
F0X
2kT

� �
ð1þ mÞ V

�

X
mr1 þ 2m

ð1� m2Þ
E

r2
1 � m2cQ0 ð20Þ

This relation is general holding independently of the atomic mass transport mechanism, and it coincides

with that given by Yu and Suo (2000) for surface chemical etching, and in the limit of small driving forces

1 Note that if the free activation energy is independent of the stress field ðV �
ij ¼ 0Þ, the instability is governed by the sole surface and

elastic energies

� dðcjÞ
dh

� dw
dh

R0 ð15Þ

The well known energetically driven MI is recovered.
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ðF0X=2kT 	 1Þ and activation strain energies ðrijV �
ij =kT 	 1Þ tends to the stability condition proposed by

Voorhess and Aziz (2000). Introducing the material parameters a and b defined as

a ¼ tanh
F0X
2kT

� �
V �

X
; b ¼ pð1� mÞ

ð1þ mÞ
c
E

ð21Þ

and normalizing the stress as �rr1 ¼ r1ð1� mÞ=E, the characteristic equation (20) can be rephrased in di-

mensionless form as

�4am�rr1 þ 2m�rr2
1 � m2 b

p
Q0 ð22Þ

Notice that comparing (15) and (20), it derives that MI can be generally expressed as the superposition of

an energetically driven instability (AT) and a kinetically driven instability (BC). The parameter a modulates

the prevalence of the AT on BC instability.

2.4. The critical conditions for morphological instability

In the sequel the critical conditions for the onset of MI are analyzed as a function of the material

parameters a and b, for two different cases: a fixed wavelength k of the surface perturbation (Case I) and an

arbitrary rough surface with a fixed remote load r1 (Case II).

2.4.1. Case I: Fixed wavelength k ¼ 2p=m
The characteristic equation (22) is quadratic in the remote stress r1 and the variation of the normalized

stability parameter dr=dh against the dimensionless stress �rr1 is shown in Fig. 2, for m ¼ 1 (m�1) and b ¼ p
(m), and different values of a, namely a ¼ 0:0, 1.0, 4.0 and 8.0. Each curve divides the plane in two zones:
stable zone where dr=dh < 0 and unstable zone where dr=dh > 0. Two critical loads can be depicted for

dr=dh ¼ 0, one is a compressive stress �rr2cr and the other a tensile stress �rr1cr, given by

�rr1cr ¼ a þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b

k

r
> 0 and �rr2cr ¼ a �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b

k

r
< 0 ð23Þ

for a > 0. The system is stable for a given wavelength if the remote load is bracketed between the two

critical loads, that is

Fig. 2. The stability parameter dr=dh as a function of the dimensionless remote load for different values of the material parameter

a ¼ 0:0, 1.0, 4.0 and 8.0 (b ¼ p (m) and m ¼ 1 (m�1)).
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r > r1cr and r < r2cr unstable

r2cr < r < r1cr stable

For a fixed m, the relation (22) gives a parabola dr=dhð�rr1Þ
dr
dh

/ 2m�rr2
1 � 4am�rr1 � m2 b

p
ð24Þ

whose vertex is in a;�2ma2 � m2b=pð Þ and intersects the vertical axes at �m2b=p. Consequently, as the

material parameter a grows the stable area becomes larger and the influence of the sign of the remote load

becomes larger too: the tensile critical load grows indefinitely with a whilst the compressive critical load

tends to zero. With similar reasonings, opposite conclusions can be drawn in the case of a < 0.
For V � ¼ 0, that is a ¼ 0, the energetically driven instability is recovered with �rrcr ¼ �

ffiffiffiffiffiffiffiffi
b=k

p
and the

problem is symmetric with respect to r ¼ 0 demonstrating that there is no influence of the sign of the

remote load on the solution.

2.4.2. Case II: Arbitrary rough surface with a fixed remote load r1
The characteristic equation (22) is quadratic in m, and the variation of the stability parameter dr=dh

against m is shown in Fig. 3, for �rr1 ¼ �5; a ¼ 1:0 and b ¼ p (m). Two different curves are considered

depending on the sign of the remote stress. In both cases a critical wave number mcr is depicted above which
the perturbation is always unstable. In addition, there is a wave number for which the stability parameter

has an absolute maximum mmax: this is the dominant perturbation, that is to say a preferred periodicity with

wave number mmax grows faster than others unstable perturbations. From the relation dr=dh ¼ 0, the

critical wave number can be readily determined as

mcr ¼ 2p�rr1
�rr1 � 2a

b
ð25Þ

The wave number of the dominant perturbation is given by mmax ¼ 2mcr. Correspondingly, a critical

wavelength kcr and dominant wavelength kmax can be defined as

kcr ¼
2p
mcr

¼ b

�rr1 �rr1 � 2a

 � ; kmax ¼

2p
mmax

¼ 2kcr ð26Þ

Fig. 3. The stability parameter dr=dh as a function of the wave number of the perturbation under tensile and compressive remote load

r1 ¼ �5 (a ¼ 1:0, b ¼ p (m)).
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Therefore the stability conditions can be summarized as

k < kcr stable perturbation

k > kcr unstable perturbation

k ¼ kcr dominant perturbation

For a ¼ 0, relation (1) is recovered. For a positive a, the largest critical wave number is calculated for a

compressive remote load being

mcrjcompression ¼ 2p�rr1
�rr1 þ 2a

b
> 2p�rr1

�rr1 � 2a
b

¼ mcrjtension ð27Þ

where the positive value of �rr1 is considered in the above relations. Consequently, kcrjcompression < kcrjtension:
for a compressive remote load the range of instability ½kcr;1� is larger than for a tensile load.

From (25), it can also be concluded that a threshold load exists below which the system is uncondi-

tionally stable and MI never occurs. In fact, for mcr ¼ 0 instability occurs only for infinitely large wave-
lengths, therefore the threshold remote load is given by

ð�rr1Þth ¼ 2a ¼ 2 tanh
FX
2kT

� �
V �

X
ð28Þ

Notice that such a threshold load is zero for a compressive load, meaning that in such a case there is no a

threshold load. Compressive loading is again the most critical condition, for a > 0. By similar reasonings,

opposite conclusions can be drawn for a negative a.

3. Stability of an array of edge cracks

Employing large perturbation analysis, Yang and Srolovitz (1993), Chiu and Gao (1994) and Yu and
Suo (1999) have shown that initially perturbed surfaces might evolves towards crack-like profiles with

spacing k coinciding with that of the initial perturbation. Notice that, Chiu and Gao (1993) have verified

that the intensification of the stress field at the cusp of a cycloid is identical to that of an edge crack under

remote tension. Therefore, such profiles can be considered as arrays of edge cracks with spacing k, as
depicted in Fig. 1b. Classical linear fracture mechanics gives the instruments to check whether such cracks

can propagate supercritically leading to the catastrophic failure of the device: if the stress intensity factor K
of the profile is larger than the critical value Kcr of the material cracks do propagate.

For the array of edge cracks loaded by an uniaxial remote stress, the stress intensity factor is given in
closed form (Tada et al., 1985) as

KI ¼ r1

ffiffiffi
k
2

r
or in dimensionless form

KI

r1
ffiffiffiffiffiffi
pa

p ¼
ffiffiffiffiffiffiffiffiffiffi
1

2p
k
a

r
ð29Þ

where a is the crack length which has to be sufficiently larger than k (�well developed cracks�).
Noda and Tsuru (1996) estimated numerically the variation of KI for an array of surface cracks with the

ratio a=k, obtaining the results reported in the second line of the following Table 1, where a comparison

with the theoretical solution (29) is also presented.

For a going to zero, the classical value of the isolated edge crack under remote tension is recovered

KI=r1
ffiffiffiffiffiffi
pa

p ¼ 1:1215, whilst as a=k increases the influence of a gets smaller and smaller since the numerical

solution tends to the theoretical value of (29), as shown in Table 1 and Fig. 4. For a=k ’ 0:2, the percentage
difference between the two solutions is smaller than 3%, thus �well developed cracks� are those with
a > 0:2k. Consequently, the analytical solution (29) can be used as a conservative estimation of the likeli-

hood of cracks to propagate.
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If a fragile material is considered, that is neglecting the nucleation of any dislocations, the critical
conditions for crack propagation are reached when the energy release rate C equals two times the surface

energy c (Ccr ¼ 2c). Under plane strain conditions, the energy release rate is C ¼ ð1� m2ÞK2
I =E. Therefore,

combining the above formulae it follows

KI cr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2cE

ð1� m2Þ

s
ð30Þ

Noticing that the array of edge cracks is unstable if K > KI cr, from (29) and (30), the critical remote stress

rSC
cr for supercritical propagation of the array of cracks is derived as

rSC
cr P

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4cE

ð1� m2Þk

s
ð31Þ

at fixed spacing k; whilst the critical wavelength kSC
cr above which the array of cracks propagates super-

critically for a fixed remote load

kSC
cr P

1

r2
1

4cE
ð1� m2Þ ð32Þ

Fig. 4. A comparison between the numerical and theoretical stress intensity factors KI=r
ffiffiffiffiffiffi
pa

p
for an array of edge cracks under remote

tension as a function of the ratio a=k between the crack depth a and spacing k.

Table 1

Numerical and analytical stress intensity factors for an array of edge cracks as from Fig. 1a

a=k 0.0 0.1 0.2 0.3 0.4 0.5

KI=r1
ffiffiffiffiffiffi
pa

p
(N&D) 1.1215 1.039 0.872 0.727 0.627 0.560

KI=r1
ffiffiffiffiffiffi
pa

p
(analytical) 1 1.261 0.892 0.728 0.630 0.564
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Substituting for the parameter b and normalizing the remote stress r1, it follows

�rrSC
cr ¼

ffiffiffiffiffiffi
4b
pk

r
and kSC

cr ¼ 4b
p�rr2

1
ð33Þ

Notice that rephrasing �rrSC
cr in dimensional form and rearranging, it derives

K ¼ r2
1k

cE=ð1� m2Þ

� �
¼ 4 ð34Þ

which coincides with (2) for cB ¼ 0 and plane strain. Therefore, the critical conditions for the supercritical

propagation of a crack-like surface can be easily estimated using linear fracture mechanics, avoiding un-

necessarily complicated long-term analysis.

4. Discussions

In the previous sections the critical conditions for the onset of stress-induced MI and supercritical

propagation of an array of edge cracks have been addressed in terms of limiting loads and wavelengths (or
wave numbers). In the sequel, these two limiting conditions are compared with the aim of understanding if

and under which situations MI could lead to SC. Again two different conditions are considered: fixed

wavelength k ¼ 2p=m (Case I), and arbitrary rough surface with a fixed remote stress r1 (Case II). The

diagrams reported in the sequel have been determined for the material properties typical of Si amorphous–

crystal transition (Table 2), as from Voorhess and Aziz (2000), for which a ¼ 4:0� 10�3 and b ¼ 10�11 (m).

4.1. Case I: Fixed wavelength k ¼ 2p=m

This case is typical of polycrystalline solids, such as ceramic coatings, or micropatterned surfaces widely

used in biomedical applications. The critical loading conditions are presented in (23) for both a tensile

remote stress (r1cr) and a compressive remote stress (r2cr), and these two relations are plotted in Fig. 5, for

a ¼ 4:0� 10�3 and b ¼ 10�11 (m). A log–log diagram is used, thus for compressive loading the modulus of

the remote stress is plotted. The area above the two curves is the critical zone, whilst below the curves the

system is stable. The critical stresses reduces as the wavelength of the perturbation increases tending to a

small frequency limit ðk ! 1Þ given by

lim
k!1

�rr1cr ¼ 2a; lim
k!1

�rr2cr ¼ 0 ð35Þ

Consequently, under tensile load there exists an absolute threshold load below which no MI occurs, and for

the material properties given in Table 2 this threshold load is equal to 0.8 GPa. Conversely, for a com-

pressive load such a threshold limit is zero, that is to say there is no threshold limit.

Moreover, it must be noticed that in real applications perturbations with wavelengths smaller or at most
equal to the maximum geometric extension L of the surface can be supported, therefore from (23) a relative

threshold load can be defined for both compressive and tensile remote loading as

Table 2

Material properties for Si microelectronic components

E (GPa) m F0 (Jm�3) c (Jm�2) X (m3) T (K) V � (m3)

75 0.25 6:27� 108 0.4 10�30 793 0:14X
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�rr1th ¼ a þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b

L

r
and �rr2th ¼ a �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b

L

r
ð36Þ

which takes up the values listed in Table 3.

Notice that in the micrometer range, typical of microelectronic applications, the threshold stresses for Si

can be much smaller than commonly measured mismatch stresses (order of 1 GPa).

Consider the tensile remote stress, the sole that could be critical for the unstable propagation of an array

of edge cracks. If the critical remote stress for the onset of MI �rrMI
cr and that for the supercritical propagation

of an array of edge cracks �rrSC
cr are compared a characteristic wavelength can be deduced ktr, that can be

called transitional wavelength, above which �rrMI
cr is always larger than �rrSC

cr , that is

k < ktr : �rr
MI
cr < �rrSC

cr

k ¼ ktr : �rr
MI
cr ¼ �rrSC

cr

k > ktr : �rr
MI
cr > �rrSC

cr

ð37Þ

Therefore only for k > ktr the stress-induced MI could lead to catastrophic failure by supercritical crack

propagation, given enough time for a crack-like surface to form. The transitional wavelength is readily

determined solving the equation �rrSC
cr ¼ �rrMI

cr for k, thus

ktr ¼
1

p
p
4



� 1

�2 b
a2

ð38Þ

Fig. 5. The tensile and compressive critical loads r1 (GPa) as a function of the wavelength k (nm) (a ¼ 4:0� 10�3; b ¼ 10�11 m).

Table 3

Threshold stress for MI as a function of the characteristic geometric dimension L, for Si in microelectronic components

L 1 nm 1 lm 1 mm 1 m

r1th 10.5 GPa 0.90 GPa 0.8 GPa 0.8 GPa

r2th )9.6 GPa )0.11 GPa )0.12 MPa )0.12 kPa
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In Fig. 6, the dimensionless critical loads for the onset of MI and for the onset of SC are plotted against the

wavelength k using the material properties listed in Table 2. With this data the transitional wavelength is

ktr ¼ 9:16 nm and the corresponding critical stress for MI rMI
cr ¼ 3:73 GPa. Notice that if the kinetically

driven instability is neglected, that is to say V � ¼ a ¼ 0, the transitional wavelength would be infinitely large

meaning that energetically driven MI could never lead to catastrophic failure. In fact under these conditions

the critical load for the onset of MI is �rrMI
cr ¼

ffiffiffiffiffiffiffiffi
b=k

p
which is always smaller than rSC

cr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4b=ðpkÞ

p
: MI could

only lead to a stable crack-like surface. Notice that the case �rrMI
cr ¼

ffiffiffiffiffiffiffiffi
b=k

p
corresponds to K ¼ p of Yu and

Suo (1999).

It is also interesting to estimate the percentage difference D between the two critical loads as k varies,

which is readily given by

DðkÞ ¼ rSC
cr � rMI

cr

rMI
cr

� 100 ¼
2ffiffi
p

p
ffiffi
b
k

q
a þ

ffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b

k

q
0
B@ � 1

1
CA� 100 ð39Þ

For k < ktr, the difference D is positive and grows with k from Dðk ¼ ktrÞ ¼ 0 to Dðk ! 0Þ ¼ffiffiffiffiffiffiffiffi
4=p

p
� 1


 �
� 100 ’ 13%, showing that the maximum difference between rSC

cr and rMI
cr is of about 13%,

negligible in most cases. However, in practice, dislocations may nucleate at the flaw tip, thus increasing the

load needed for crack supercritical propagation and the percentage difference DðkÞ. This could be taken into

account by summing up at the surface tension c the term cp > 0, thus increasing the surface energy of the

system at the flaw tip.

4.2. Case II: Arbitrary rough surface with a fixed remote load r1

Consider a rough surface where perturbations of various wavelength coexist. In this case the remote
stress is fixed and the independent variable affecting the solution is the wavelength k. In a previous section,

Fig. 6. Case I––fixed wavelength k ¼ 2p=m: a comparison between the critical conditions for the onset of MI (––) and the critical

conditions for the supercritical propagation of an array of edge cracks (- - -). The two curves intersect at the transitional wavelength ktr.
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the critical wavelengths for both the onset of MI kMI
cr (26) and supercritical propagation of an array of edge

cracks kSC
cr (33) have been presented as a function of the material parameters a and b. In addition it has been

pointed out that a dominant perturbation exists for the onset of MI and it is given by kmax ¼ 2kMI
cr . Noticing

that among all the components, eventually the sole dominant perturbation would evolve towards a crack-
like profile, a comparison between kSC

cr and kmax is performed. Thus, for a fixed tensile load, it follows that

kmax ¼
2b

�rr1 �rr1 � 2a

 � Q

2

p
2b
�rr2
1
¼ kSC

cr ð40Þ

where the sign of the above equation is defined by the sign of a, that is

a < 0 : kmaxQkSC
cr if �rr1Q

4

ðp � 2Þ jaj

a ¼ 0 : kmax > kSC
cr being

2

p
< 1

a > 0 : kmax > kSC
cr being �rr1 > 2a2

Recalling that wavelengths larger than kSC
cr are critical against crack propagation, MI would always lead

to catastrophic failure for a P 0. On the other hand, for a < 0, catastrophic failure would be induced only

for �rr1 > 4jaj=ðp � 2Þ � 3:5jaj. These results are plotted in Fig. 7, for the material properties of Table 2.

4.3. The effect of the material parameters a and b

For a fixed k, the criticalness of the system is assessed by the transitional wavelength ktr and it depends
on the material parameters a and b. Conversely, for an arbitrary rough surface with a fixed remote load,

catastrophic failure occurs if and only if �rr1 < ð4=ðp � 2ÞÞjaj (for a < 0), which depends on the sole para-

Fig. 7. Case II––fixed remote load r1: a comparison between the critical conditions for the onset of MI (––) and the critical conditions

for the supercritical propagation of an array of edge cracks (- - -). The dominant perturbation kmax ¼ 2kMI
cr has a wavelength larger than

the critical perturbation for the supercritical propagation of an array of edge cracks kSC
cr .
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meter a. As a consequence, it is interesting to study the influence of the material parameters a and b on the

transitional wavelength ktr.
Usually, the parameter b takes up small positive values being the Young�s modulus E much larger than

the surface tension c

b ¼ pð1� mÞ
ð1þ mÞ

c
E

say ¼ 10�3–10�1 ðnmÞ ð41Þ

whilst the parameter a can take up positive and negative values depending on the sign of V �

a ¼ tanh
F0X
2kT

� �
V �

X
say ¼ 0–0:01 ð42Þ

In Fig. 8, the log–log contour plots of the transitional wavelength ktr is plotted against the parameters a and

b

ktr ¼ exp log
1

p
p
4


��
� 1

�2
�
þ log b � 2 log a

�
ð43Þ

It is worth recalling that as the transitional wavelength ktr increases, the likelihood that MI could induce SC
decreases. As the parameter a grows the transitional wavelength decreases rapidly, whilst the parameter b
has an opposite influence on ktr.

Fig. 8. The influence of the material parameters a and b on the transitional wavelength ktr: the larger is a and the smaller is b more

likely is the occurring of catastrophic failure related to stress-driven MI.
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5. Conclusions

Stress-driven MI has been studied by means of a small perturbation technique. The dependence of the

atomic mobility M on the stress field has been considered in the kinetic law in order to examine both the
classical energetically driven instability and the more recently introduced kinetically driven instability.

The stability of the system has been assessed investigating the stability of atomic motion regardless of the

transport mechanism (surface diffusion, evaporation and condensation, chemical reactions), thus leading to

a more intuitive and straightforward derivation of a general stability condition. By means of a classical

small perturbation analysis the critical remote loads rcr
MI and wavelengths kcr

MI for the onset of MI have been

defined as a function of the material parameters a and b. In fact, by normalizing the stability equation two

governing material parameters have been identified: a ¼ V �=X � tanh½F0X=2kT �ð Þ, which is dimensionless

and related to the driving force F0 and activation strain V �, and b ¼ pð1� mÞ=ð1þ mÞ � c=Eð Þ, having the
dimension of a length and being proportional to the ratio c=E. Moreover, observing that MI could evolve

into crack-like surfaces, the critical conditions for the supercritical propagation of an array of edge cracks

(SC) has been determined in terms of limiting loads rSC
cr and wavelengths kSC

cr . Finally, the two sets of critical

conditions for MI and SC have been compared with the aim of defining if and under which situations MI

could lead to catastrophic failure of microdevices by supercritical crack propagation.

Two different practical cases have been considered: (i) a fixed wavelength k ¼ 2p=m (Case I), typical for

polycrystalline materials and micropatterned surfaces; (ii) arbitrary rough surface with a fixed remote load

r1 (Case II).
The following results have been obtained:

Case I––fixed wavelength:

1. The stability condition depends on both material parameters a and b.
2. Two different threshold loads (compressive and tensile) for the onset of MI have been introduced as a

function of material parameters a and b, as from (23). Also, for a > 0, it has been shown that MI could

never occur if �rr1cr < 2a, whilst no threshold load exists under compression ð�rr2cr ¼ 0Þ.
3. The effects of a finite size domain L on the stability prediction has been incorporated (Eq. (36)), show-

ing that in the micrometer range threshold loads could be much smaller than typical mismatch stresses

(order of 1 GPa), and demonstrating again that MI is very likely.

4. A transitional wavelength ktr has been introduced, as a function of the material parameters a and b,
above which MI could always lead to SC and failure, given enough time for the surface to evolve.

5. For a ¼ 0, i.e. energetically driven MI would never lead to SC being �rrMI
cr < �rrSC

cr .

Case II––arbitrary rough surface with a fixed remote load:

1. The stability condition depends on the sole material parameters a.
2. It has been found that the wavelength of the dominant perturbation, that is the perturbation with the

largest growth rate, which eventually would degenerate into a crack-like surface, is always larger than

kSC
cr the critical wavelength for SC for aP 0, meaning that MI would always lead to SC given enough

time for the surface to evolve.

Finally, it has been investigated the influence of the material properties a and b on such limiting con-

ditions, showing that the transitional wavelength reduces, that is to say catastrophic failure due to MI is
more likely, as the driving force F0, the activation energy V � and the surface tension c increase, and the

Young�s modulus E reduces.
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